Manxetten loyihasi

Manxetten loyihasi


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Manxetten loyihasi Ikkinchi Jahon urushi paytida amerikaliklar tomonidan ishlab chiqilgan atom qurolini ishlab chiqish harakatining kod nomi edi. Atom bombasini munozarali yaratish va undan oxirigacha foydalanish dunyoning etakchi ilmiy ongini, shuningdek AQSh harbiylarini jalb qildi - va ishlarning aksariyati Nyu -Meksiko shtatining Los -Alamos shahrida bo'lib o'tdi. dastlab nomlangan. Manxetten loyihasi 1930 -yillardan beri nemis olimlari yadro texnologiyasidan foydalangan holda qurol ustida ishlaganligi va Adolf Gitler uni ishlatishga tayyorligi haqidagi qo'rquvga javoban boshlandi.

Amerika urush e'lon qiladi

Manxetten loyihasini olib boruvchi agentliklar birinchi marta 1939 yilda prezident Franklin D. Ruzvelt tomonidan, AQSh razvedka xizmatlari Adolf Gitler uchun ishlaydigan olimlar allaqachon yadro quroli ustida ishlayotgani haqida xabar berishganidan keyin tuzilgan.

Avvaliga Ruzvelt uranning qurol sifatida potentsial rolini o'rganish bilan shug'ullanadigan olimlar va harbiy amaldorlar guruhidan iborat Uran bo'yicha maslahat qo'mitasini tuzdi. Qo'mita xulosalariga asoslanib, AQSh hukumati Kolumbiya universitetida Enriko Fermi va Leo Szilard tadqiqotlarini moliyalashtirishni boshladi, ular radioaktiv izotoplarni ajratish (uranni boyitish deb ham ataladi) va yadro zanjiri reaktsiyalariga qaratilgan edi.

Uran bo'yicha maslahat qo'mitasi 1940 yilda Milliy mudofaa tadqiqotlari qo'mitasi deb o'zgartirildi, nihoyat 1941 yilda Ilmiy tadqiqotlar va ishlab chiqish idorasi (OSRD) deb o'zgartirildi va Fermi a'zolari ro'yxatiga qo'shildi.

O'sha yili, Yaponiyaning Pearl -Harborga hujumidan so'ng, prezident Ruzvelt AQSh Ikkinchi jahon urushiga kirishini va Buyuk Britaniya, Frantsiya va Rossiya bilan birlashishini, Evropadagi nemislarga va Tinch okeani teatrida yaponlarga qarshi kurashishini e'lon qildi.

Armiya muhandislar korpusi 1942 yilda Prezident Ruzveltning roziligi bilan OSRDga qo'shildi va loyiha rasmiy ravishda harbiy tashabbusga aylandi, olimlar yordamchi rolni bajardilar.

Manxetten loyihasi boshlanadi

OSRD 1942 yilda Manxetten muhandis okrugini tashkil qildi va uni Nyu -York shahrining xuddi shu nomli tumanida qurdi. Loyihani boshqarishga AQSh armiyasi polkovnigi Lesli R. Groves tayinlandi.

Fermi va Szilard hanuzgacha Chikago universitetida atomlarni ajratish va o'zaro ta'sir qilish jarayoni bilan yadro zanjiri reaktsiyalari bo'yicha tadqiqotlar olib borishdi va uran-235 ishlab chiqarish uchun uranni muvaffaqiyatli boyitishdi.

Ayni paytda, Glenn Seaborg kabi olimlar sof plutoniyning mikroskopik namunalarini ishlab chiqarishdi, Kanada hukumati va harbiy amaldorlari Kanadadagi bir nechta ob'ektlarda yadroviy tadqiqotlar olib borishdi.

1942 yil 28 -dekabrda Prezident Ruzvelt Manxetten loyihasini tuzishga ruxsat berdi, bu turli tadqiqot ishlarini yadroviy energiyani qurollantirish maqsadi bilan birlashtirish edi. Nyu -Meksiko, Tennessi va Vashingtonning olis joylarida, shuningdek Kanadadagi saytlarda ushbu tadqiqotlar va tegishli atom sinovlarini o'tkazish uchun moslamalar o'rnatildi.

Robert Oppengeymer va Y loyihasi

Nazariy fizik J. Robert Oppengeymer 1943 yilda Nyu -Meksiko shimolidagi Los Alamos laboratoriyasi direktori etib tayinlanganida (Edvard Teller va boshqalar bilan) yadroviy bo'linish kontseptsiyasi ustida ishlagan.

Los Alamos laboratoriyasi - yaratilishi Y loyihasi deb nomlangan - rasman 1943 yil 1 yanvarda tashkil etilgan. Kompleks Manxetten loyihasining birinchi bombalari qurilgan va sinovdan o'tgan.

1945 yil 16 -iyulda, Nyu -Meksiko shtati, Alamogordo yaqinidagi cho'lda joylashgan, birinchi atom bombasi muvaffaqiyatli uchirildi - Uch Birlik testi, balandligi taxminan 40 ming fut bo'lgan qo'ziqorin bulutini yaratdi va Atom davrini boshladi.

Oppenxaymer ostida ishlaydigan olimlar ikkita aniq turdagi bombani ishlab chiqdilar: uranga asoslangan "Kichkina bola" dizayni va "semiz odam" deb nomlangan plutoniyli qurol. Ikkala dizayn ham Los Alamosda ishlaganida, ular Ikkinchi jahon urushini tugatishga qaratilgan AQSh strategiyasining muhim qismiga aylandi.

Potsdam konferentsiyasi

Nemislar Evropada katta yo'qotishlarni boshdan kechirishgan va taslim bo'lish arafasida, 1945 yildagi AQSh harbiy rahbarlari o'rtasida kelishuv shuki, yaponlar achchiq oxirigacha kurashadilar va orol davlatiga keng miqyosli bostirib kirishga majbur qiladilar, natijada har ikki tomondan ham katta qurbonlar bo'ladi.

1945 yil 26-iyulda Germaniyaning Potsdam shahrida ittifoqchilar tomonidan bosib olingan Potsdam konferentsiyasida AQSh Yaponiyaga ultimatum qo'ydi-Potsdam deklaratsiyasida ko'rsatilgan shartlarga binoan taslim bo'ldi (boshqa qoidalar qatorida yaponlarni yangi, demokratik va tinch hukumatni tuzing) yoki "tez va butunlay halokatga" duch keling.

Potsdam deklaratsiyasi Yaponiya kelajagida imperator uchun hech qanday rol o'ynamagani uchun, orol xalqining hukmdori uning shartlarini qabul qilmoqchi emas edi.

Xirosima va Nagasaki

Shu bilan birga, Manxetten loyihasining harbiy rahbarlari Yaponiyaning Xirosima shahrini atom bombasi uchun ideal nishon sifatida aniqladilar. Nyu -Meksikoda ishlab chiqilgan texnologiyaning kuchli namoyishi yaponlarni taslim bo'lishga undash uchun zarur deb topildi.

Taslim bo'lish to'g'risida hech qanday kelishuv bo'lmaganda, 1945 yil 6-avgustda Enola Gey bombardimonchi samolyoti Xirosimadan 1900 fut balandlikda hali sinovdan o'tkazilmagan "Kichkina bola" bombasini tashlab, besh kvadrat mil maydonda misli ko'rilmagan halokat va o'limga olib keldi. Oradan uch kun o'tib, taslim bo'lishni e'lon qilmagan holda, 9-avgust kuni Nagasaki shahriga torpedo quradigan zavod joylashgan "Yog 'odam" bombasi tashlandi va shaharning uch kvadrat kilometridan ko'proq qismini vayron qildi.

Ikkita bomba birlashganda 100 mingdan ortiq odam halok bo'ldi va Yaponiyaning ikkita shahri erga qulab tushdi.

Yaponiyaliklar Ruzvelt vafotidan keyin yangi prezident Garri Truman boshchiligidagi Vashingtonga 10 avgustda taslim bo'lish niyati haqida xabar berishdi va 1945 yil 14 avgustda rasman taslim bo'lishdi.

Manxetten loyihasining merosi

Ikkinchi jahon urushining tugashiga olib keladigan qurollar ishlab chiqilganidan so'ng, Manxetten loyihasining hikoyasi 1945 yil avgustda tugaydi, deb o'ylash oson.

Urush tugagach, Qo'shma Shtatlar Manxetten loyihasi doirasida ishlab chiqilgan texnologiyalarni boshqa sohalarda qo'llashga qaratilgan tadqiqot ishlarini nazorat qilish uchun Atom energiyasi komissiyasini tuzdi.

Oxir-oqibat, 1964 yilda o'sha paytdagi prezident Lindon B. Jonson AQSh hukumatining yadroviy materiallar ustidan xususiy mulkchilikka ruxsat berish orqali yadroviy energiya ustidan samarali monopoliyasiga chek qo'ydi.

Manxetten loyihasi muhandislari tomonidan takomillashtirilgan yadroviy bo'linish texnologiyasi o'sha paytdan boshlab yadroviy reaktorlarni, energiya generatorlarini, shuningdek, tibbiy tasvirlash tizimlarini (masalan, MRT apparatlari) va radiatsiya terapiyasini ishlab chiqish uchun asos bo'lib xizmat qildi. saraton.

Manbalar

Manxetten: Armiya va atom bombasi. AQSh armiyasi harbiy tarix markazi.
Manxetten loyihasi - uning hikoyasi. AQSh Energiya vazirligi: Ilmiy va texnik axborot boshqarmasi.
Leo Szilard, svetofor va yadro tarixining bir bo'lagi. Amerikalik ilmiy.
J. Robert Oppengeymer (1904—1967). Atom arxivi.


Manxetten loyihasining tarixiy manbalari

AQSh Energetika vazirligi (DOE) Manxetten loyihasining bosma, onlayn va shaxsan tarixiy manbalarining keng doirasini ishlab chiqdi va ommaga taqdim etdi. Bularga tarixlar, veb -saytlar, hisobotlar va hujjatlar to'plamlari, ko'rgazmalar va ekskursiyalar kiradi.

DOE Manxetten loyihasi tarixi: Kafedra tomonidan ishlab chiqarilgan tarixlar o'z ichiga oladi Manxetten loyihasiQisqacha ma'lumotni 100 sahifada qisqacha taqdim etadi (35 sahifali "Fotogalereya" ni ham o'z ichiga oladi). Manxetten loyihasi: atom bombasini yasash. Bu texnik bo'lmagan, juda o'qiladigan hisoblar umumiy o'quvchi uchun mo'ljallangan. 1962 yilda nashr etilgan Yangi dunyo, 1939-1946, Manxetten loyihasining birinchi yirik tarixi. Rasmiy shaxsning 1 -jildi sifatida Atom energiyasi komissiyasi tarixi seriya, Yangi dunyo ham tasniflanmagan, ham tasniflanmagan manba materiallardan foydalangan va ilgari oshkor qilinmagan ko'p narsalarni oshkor qilgan. Yangi dunyo va AQSh armiyasi harbiy tarix markazi Manxetten: Armiya va atom bombasi 1985 yilda nashr etilgan, Manxetten loyihasining eng batafsil nashr qilingan hisoblari bo'lib qolmoqda va yirik kutubxonalarda mavjud.

2013 yil iyul oyida bo'lim o'z faoliyatini boshladi Manxetten loyihasi: manbalar, veb-ga asoslangan, bo'lim tasniflash boshqarmasi va uning tarixi dasturi o'rtasida birgalikdagi hamkorlik. Sayt Manxetten loyihasi haqidagi ma'lumot va hujjatlarni keng auditoriyaga, shu jumladan olimlar, talabalar va keng jamoatchilikka tarqatish uchun mo'ljallangan. Manxetten loyihasi: manbalar ikki qismdan iborat: 1) Manxetten loyihasi: interaktiv tarix, Manxetten loyihasi haqida ma'lumotli, o'qilishi oson, keng qamrovli sharh berish uchun mo'ljallangan veb-sayt tarixi va 2) Manxetten tumani tarixi, Urush oxirida general Lesli Groves buyrug'i bilan tuzilgan ko'p jildli tasniflangan tarix, juda ko'p ma'lumotni tizimli, tayyor shaklda to'plagan va keng izohlar, statistik jadvallar, jadvallar, muhandislik rasmlari, xaritalar va fotosuratlarni o'z ichiga olgan. Hamma 36 jild Manxetten tumani tarixi, maxfiylikdan chiqarildi va redaksiya bilan maxfiylashtirildi, to'liq matnli Internetda mavjud.

Manxetten loyihasi saytlari tarixi: Manxetten loyihasi haqida ma'lumot olish uchun qo'shimcha manbalarni bo'limning dala maydonchalari va laboratoriyalarida joylashgan quyidagi saytlardan topishingiz mumkin: Los Alamos milliy laboratoriyasi Bizning tariximiz, Y-12 milliy xavfsizlik kompleksi Y-12 tarixi, Oak Ridge milliy laboratoriyasining tarixiy joyi va Xanford Xanford tarixi. 2015 yil 10-noyabrda Manxetten loyihasi milliy tarixiy bog'ining ochilishi bilan birgalikda bo'lim K-25 virtual muzeyi veb-saytini ishga tushirdi.

Manxetten loyihasi rasmlari: DOE o'zining Flickr sayti orqali Manxetten loyihasining turli rasmlariga kirishni ta'minlaydi.

Manxetten loyihasi rekordlari: Departament Manxetten loyihasi bilan bog'liq maxfiy maxfiy hisobotlarni va hujjatlarni OpenNet veb-saytida e'lon qilishni davom ettirmoqda. Bu qidiruv bazasi 1994 yil 1 oktyabrdan keyin oshkor qilingan va oshkor qilingan barcha hujjatlarga bibliografik havolalarni o'z ichiga oladi. Ba'zi hujjatlarni to'liq matnda ko'rish mumkin. Tasniflanmagan va oshkor qilinmagan Manxetten loyihasi yozuvlari to'plamiga Milliy arxivlar va yozuvlar boshqarmasida (NARA) kirish mumkin. Manxetten muhandis okrugining (MED) asosiy ma'muriy hujjatlari Tennasi shtatining Oak -Ridjidan chiqdi va Jorjiya shtatining Atlanta shahrida joylashgan NARAning janubi -sharqiy mintaqasiga o'tkazildi. Shuningdek, Atlantada MED operatsion bo'linmasi va Oak Ridge -ning boshqa yozuvlari tasniflanmagan/oshkor qilinmagan. Tasniflangan MED yozuvlari NARA shtab -kvartirasiga yuborildi (Kollej Parkidagi II arxiv).


Manxetten loyihasi - TARIX

Manxetten loyihasi nafaqat Ikkinchi Jahon Urushining natijalarini mustahkamlaydigan voqealarni ro'y berdi. Manxetten loyihasi, shuningdek, abadiy jang qilish usulini o'zgartirdi. Bu, shuningdek, super kuchlar va ularning ittifoqchilari bo'la oladigan buyuk davlatlarning global joylashuvining to'liq o'zgarishiga yordam berdi.

Albatta, Manxetten loyihasining asl maqsadi (1942 yildan 1945 yilgacha) Ikkinchi jahon urushini tugatish edi. Maqsad shu bo'lsa -da, hatto loyihaning markazida bo'lganlar ham o'z maqsadlariga muvaffaqiyatli erishish yo'li bilan tarixni qanday o'zgartirishi va shakllantirishi haqida haqiqatan ham tushunishmagan: funktsional atom qurollarini yaratish va yaratish.

Atomning bo'linishi

1930 -yillarda atomni bo'linish jarayoni deb nomlanishi mumkin bo'lgan narsa aniqlandi. 1939 yilda ko'plab amerikalik olimlar bu jarayonni harbiy maqsadlarda ishlatish yo'llarini izlaydilar. Ajablanarlisi shundaki, ushbu loyihada ishlaydigan ko'plab olimlar Evropada fashistik rejimlardan qochgan yangi ko'chirilgan evropaliklar edi. Bu olimlar endi o'z hayotlarini bu tuzumlarning mag'lubiyatiga bag'ishladilar.

Loyihaning dastlabki bosqichlari

Oxir -oqibat, Manxetten loyihasiga aylanadigan birinchi muhim qadam, 1939 yilda olim Enriko Fermi Dengiz floti bo'limi vakillari bilan uchrashganida bo'ldi. Ko'p o'tmay, 1939 yilning yozida afsonaviy mutafakkir Albert Eynshteyndan o'sha paytdagi prezident Franklin D. Ruzveltga taqdimot qilish so'raladi. Taqdimotda Eynshteyn butunlay boshqarib bo'lmaydigan bo'linish zanjiri reaktsiyasini chiqarishda ulkan harbiy salohiyat borligini ko'rsatdi. Samarali ishlatilgan ushbu zanjirli reaktsiya ilgari er yuzida hech qachon ko'rilmagan qurolni yaratish uchun ishlatilishi mumkin edi.

Loyihaning birinchi bosqichi 1940 yil boshida oldinga siljidi. Dastlabki byudjet tadqiqot uchun 6000 AQSh dollari miqdoridagi grant edi. Taxminan ikki yil mobaynida natijalar umid baxsh etdi va Ilmiy tadqiqotlar va ishlanmalar boshqarmasi 1941 yil 6 dekabrda loyihani nazorat qila boshladi.

Qo'shma Shtatlar 1941 yilda Ikkinchi Jahon Urushiga kirdi va bu loyiha atrofidagi tadqiqotlar Mudofaa vazirligiga o'tkaziladi. (Keyin "Urush bo'limi" deb nomlangan) bu harakatning sababi, tadqiqot, ishlab chiqish va ilm -fan sohasidagi eng yuqori iste'dod mudofaada ishlaganligi edi. Shu sababli, agar o'sha mutaxassislar qurollarni tadqiq qilishda to'g'ridan-to'g'ri, amaliy yondashuvni qo'llasa, eng katta yutuqlarga erishiladi deb ishonilgan.

Manxetten loyihasi tug'ilgan

Manxetten loyihasi oxir -oqibat o'zining rasmiy kod nomini 1942 yilda oladi. Bu loyiha bilan bog'liq bo'lgan qurilish ishlarining ko'p qismini Manxetten muhandislar korpusining tuman ofisiga yuborgan. Buning bir sababi shundaki, loyihaning dastlabki tadqiqotlari Manxetten hududida joylashgan Kolumbiya universitetida olib borilgan.

Bu loyihani tushunish kerak bo'lgan narsa shundaki, bu juda katta loyiha edi. Ko'p ishlar Manxetten hududida bajarilgan bo'lsa -da, Nyu -York shahrining bu qismi tadqiqot va ishlanmalar olib boriladigan yagona joy emas edi. Darhaqiqat, Amerika Qo'shma Shtatlarining turli burchaklarida joylashgan ilmiy idoralar bor edi, ular har xil vazifalarni bajaradilar va ilgari hech qachon ilmiy va harbiy xizmatchilar tomonidan olib kelinmagan suvlarga kiradilar.

Xalqaro loyiha

Qo'shma Shtatlar bunday loyiha bilan shug'ullangan yagona davlat emas edi. Germaniya 1940 yilda o'z biznesini boshlagan va bu AQSh va Buyuk Britaniyaning eng katta tashvishi edi, desak, mo''jiza bo'lardi. Buyuk Britaniya ham o'z loyihasi ustida ishlagan va oxir -oqibat AQSh va Kanada bilan birgalikda Manxetten loyihasini olib borishda yordam berish uchun hamkorlikda ishlagan bo'lar edi.

1943 yilda dunyodagi eng buyuk ilmiy aqlli odamlar o'z ishlarini Manxetten loyihasiga qo'shib, uning rivojlanishini davom ettirishga yordam berishdi.

Fission zanjirini yaratish

Tadqiqotning asosiy jihatlaridan biri bo'linish zanjirini yaratish uchun mos manbani topish edi. Uran 238 dastlab sinab ko'rilgan, ammo natijasi befoyda edi. Uran 235 bo'linish zanjiri jarayoniga duchor bo'lgan keyingi materialga aylandi, lekin u etarli darajada ishonchli emas edi va aniq natijalarni ko'rish uchun juda ko'p ish kerak edi. Oxir -oqibat, aynan Plutoniy 235 zanjir reaktsiyasini yaratish uchun ishlatiladigan manba birikmasi bo'ladi.

Bomba haqida tushuncha

1943 yilgacha, bo'linish zanjirini qurolga aylantirish uchun ishlatiladigan haqiqiy bomba ishlab chiqarish ustida ko'p ish qilinmagan. Atomni bo'linish bo'yicha cheklangan yutuqlarga erishilganligi sababli, J. Robert Oppenxaymer Nyu -Meksiko shtatining Los -Alamos shahrida haqiqiy bomba yaratish va sinovdan o'tkazish uchun laboratoriya qurganida, bomba yaratish yo'li eng yuqori tezlikda harakat qilardi.

Nyu -Meksiko shtatidagi Manxetten loyihasining ko'lami bo'linadigan material miqdorini qisqartirish edi, bu portlashning o'ta og'ir massasini olish uchun etarli bo'lishi mumkin edi. Bu portlash paytida ishonchli va samarali ta'sir ko'rsatadigan bomba ichidagi zanjirli reaktsiyadan foydalana olishdan tashqari.

Birinchi atom bombasi sinovi

2 milliard dollarlik tadqiqot va ishlanmalardan so'ng, atom bombasining amaliy prototipi yaratildi. 1945 yil 16 -iyul erta tongda Nyu -Meksiko cho'lida birinchi atom bombasi sinovi o'tkazildi. Bomba katta qo'ziqorin buluti shaklida portladi. Portlash kuchi 20000 tonna dinamitga teng edi va zarba to'lqinlari kilometrlarda sezildi. Atrofdagi bomba sinov maydonining katta qismi bug'langandi. Ma'lum bo'lishicha, yangi super qurol ishlagan va Manxetten loyihasiga sarflangan vaqt va pul kerakli natijalarni bergan. Natijalar shu vaqtgacha insoniyat tarixidagi eng halokatli qurolni yaratish edi.

Ko'p o'tmay, atom bombasi Ikkinchi jahon urushini Xirosima va Nagasakini portlatish orqali tugatish uchun ishlatiladi.


51f. Manxetten loyihasi


Bir paytlar tasniflangan bu fotosuratda atom olimlari "Gadjet" laqabini olgan birinchi atom bombasi va mdash bor. Yadro davri 1945 yil 16 iyulda Nyu -Meksiko sahrosida portlatilgan paytdan boshlangan.

1939 yil boshida jahon ilmiy hamjamiyati nemis fiziklari uran atomining bo'linish sirlarini bilib olishganini aniqladilar. Qo'rquv tez orada fashist olimlarining bu energiyadan so'zsiz halokatga qodir bomba ishlab chiqarish imkoniyatidan qo'rqdi.

Fashistlarning ta'qibidan qochgan olimlar Albert Eynshteyn va fashistik Italiyadan qochgan Enriko Fermi hozir AQShda yashayotgan edilar. Ular prezidentga Axis kuchlari qo'lida atom texnologiyasining xavfi to'g'risida ma'lumot berish kerak degan fikrga kelishdi. Fermi o'z tashvishlarini hukumat amaldorlariga bildirish uchun mart oyida Vashingtonga borgan. Ammo ozchilik uning bezovtalanishi bilan bo'lishdi.


Los Alamos atom olimlari hech narsani tasodifan qoldirib, 1945 yil may oyida kuzatuv asboblarini tekshirish uchun oldingi sinovdan o'tkazdilar. 100 tonnalik bomba Trinity saytidan 800 metr narida portladi, u erda gadjet bir necha hafta o'tgach portlatiladi.

Eynshteyn prezident Ruzveltga shu yil oxirida atom tadqiqotlari dasturini ishlab chiqishni talab qilib xat yozdi. Ruzvelt bunday loyihaning zarurligini ham, foydasini ham ko'rmadi, lekin asta -sekin davom etishga rozi bo'ldi. 1941 yil oxirida, Amerikaning atom bombasini loyihalash va yaratish bo'yicha sa'y -harakatlari o'z nomini oldi va Manxetten loyihasi.

Dastlab tadqiqot faqat bir nechta universitetlarga asoslangan edi: Kolumbiya universiteti, Chikago universiteti va Berklidagi Kaliforniya universiteti. 1942 yil dekabrda Fermi bir guruh fiziklarni Chikago universitetidagi Stagg -Fild tribunalari ostida boshqariladigan birinchi yadroviy zanjir reaktsiyasini ishlab chiqarishga boshlaganida katta yutuq yuz berdi.


Fashistik Italiyadan Amerikaga ketgan fizik Enriko Fermi AQShni atom tadqiqotlarini boshlashga undadi. Natijada maxfiy "Manxetten loyihasi" paydo bo'ldi.

Ushbu bosqichdan keyin mablag 'erkinroq taqsimlandi va loyiha juda tez sur'atlar bilan rivojlandi. Yadroviy inshootlar Oak Ridj, Tennessi va Xanfordda (Vashington) qurilgan. Asosiy yig'ish zavodi Nyu -Meksiko shtatining Los Alamos shahrida qurilgan. Bu buyumlarni Los Alamosda yig'ish Robert Oppengeymerga topshirildi. Yakuniy qonun loyihasi hisoblab chiqilgach, atom bombasini tadqiq etish va rivojlantirishga 2 milliard dollarga yaqin mablag 'sarflandi. Manxetten loyihasida 120 mingdan ortiq amerikaliklar ishlagan.

Maxfiylik hamma narsadan ustun edi. Nemislar ham, yaponlar ham bu loyihani bilib ololmadilar. Ruzvelt va Cherchill ham Stalinni qorong'uda saqlashga rozi bo'lishdi. Natijada, jamoatchilikni xabardor qilish yoki bahslashish yo'q edi. Atom bombasining rivojlanishi haqida 120 ming odamni jim turish imkonsiz edi, shuning uchun faqat ichki olimlar va amaldorlarning kichik imtiyozli kadrlari bilar edi. Aslida, vitse-prezident Truman prezident Truman bo'lgunga qadar Manxetten loyihasi haqida hech qachon eshitmagan.

Axis kuchlari Los -Alamosdagi harakatlardan bexabar qolsalar -da, amerikalik rahbarlar keyinchalik Klaus Fuchs ismli sovet josusi olimlarning ichki doirasiga kirib kelganini bilib olishdi.


Nevada cho'lidagi bu krater 104 kilotonlik yadroviy bomba yordamida, 635 fut chuqurlikda ko'milgan. Bu 1962 yildagi yadroviy quroldan kanallar va portlarni qazish uchun foydalanish mumkinligini tekshirish natijasi.

1945 yil yoziga kelib, Oppengeymer birinchi bombani sinovdan o'tkazishga tayyor edi. 1945 yil 16 -iyulda Nyu -Meksiko shtati Alamogordo yaqinidagi Trinity saytida Manxetten loyihasi olimlari dunyodagi birinchi atom bombasining portlashini tomosha qilishga tayyorlanishdi. Qurilma 100 metrli minoraga o'rnatildi va tong otguncha zaryadsizlandi. Hech kim natijaga to'g'ri tayyorgarlik ko'rmagan.

200 milya masofada ko'rinadigan ko'zni qamashtiruvchi chaqnash tong osmonini yoritdi. Qo'ziqorinli bulut 40 ming fut balandlikka etib bordi va 100 mil uzoqlikdagi fuqaro uylarining derazalarini uchirdi. Bulut erga qaytgach, yarim mil kenglikdagi shishani metamorfizatsiyalovchi qum hosil qildi. Tez orada sahroda ulkan o'q-dorilar ombori portlab ketganini tushuntirib, soxta yashirin hikoya chiqdi. Tez orada Germaniyaning Potsdam shahrida prezident Trumanga loyiha muvaffaqiyatli bo'lganligi haqida xabar keldi.


Manxetten loyihasining ta'siri oldinga siljiydi

Xirosima va Nagasakidagi portlashlar yanada kuchli atom qurollarini tadqiq qilish va keyinchalik ishlab chiqishning oxiri emas edi. Bugungi kunda zamonaviy yadroviy bombalar Xirosimaga tashlangan bombadan 80 baravar kuchliroqdir. Xirosima ustida ishlab chiqarilgan qo'ziqorin buluti, zamonaviy atom bombalarining taxmin qilingan qo'ziqorin buluti bilan taqqoslaganda, zamonaviy analogining 1% dan kichikdir. Bu dahshatli fikr, chunki tom ma'noda zamonaviy atom bombalaridan birining portlashi Yerdagi deyarli barcha hayotning tugashiga olib keladi.

Hatto bu bombalar o'zlari bilan olib kelingan vayronagarchilikning guvohi bo'lganidan keyin ham, Ikkinchi jahon urushi tugaganidan keyin mamlakatlar faqat o'z atom bombalarini yaratishga harakat qilishdi. Katta o'yinchilar o'rtasida yadroviy qurollanish poygasi boshlandi va Sovet Ittifoqi va AQSh o'rtasida shunday noaniqlik bo'lganki, har ikki millatning ko'plab fuqarolari har kecha uxlab qolishdi, agar ular uyg'onib, quyosh chiqishini ko'rsalarmikin? ko'proq vaqt.


Manxetten loyihasi hikoyasiga bag'ishlangan park tarixi

Bu 2016 yilgi rasmda Manxetten loyihasi milliy tarixiy bog'ining bir qismi bo'lgan Xanford sayti B Reaktor milliy tarixiy diqqatga sazovor joyining ko'rinishi, turizm va ta'limning jonli chizig'i ko'rsatilgan.

Manxetten loyihasi Ikkinchi jahon urushi paytida atom qurolini yaratish uchun yaratilgan misli ko'rilmagan, maxfiy tadqiqot va ishlab chiqish dasturi edi.

Atom asrining boshlanishi XX asrning eng muhim voqealaridan biri sifatida tan olingan. Uning chuqur merosiga yadroviy qurollarning tarqalishi, atrof -muhitni tozalash bo'yicha ulkan sa'y -harakatlar, milliy laboratoriya tizimini ishlab chiqish va yadroviy tibbiyot kabi yadroviy materiallardan tinch maqsadlarda foydalanish kiradi.

2001 yilda DOE tarixiy qo'riqxonalar bo'yicha maslahat kengashi va taniqli tarixiy muhofazachilar guruhi bilan hamkorlikda Manxetten loyihasi davridagi DOEga tegishli oltita tarixiy ob'ektni saqlash variantlarini ishlab chiqdi, ular g'ayrioddiy tarixiy ahamiyatga ega va "esdalik" ga loyiq deb topildi. milliy boyliklar sifatida. "

2004 yilda Kongress Milliy bog'lar xizmatiga (NPS) DOE bilan ishlashni Manxetten loyihasi haqida hikoya qilishga bag'ishlangan milliy parklar tizimining yangi birligini tashkil etish maqsadga muvofiqligini baholashni buyurdi.

Mahalliy jamoalar, saylangan amaldorlar, DOE, NPS va boshqa manfaatdor tomonlarning o'n yillik ishidan so'ng, Manxetten loyihasi milliy tarixiy bog'i 2015 moliyaviy yil uchun Karl Levin va Xovard P. "Buck" McKeon milliy mudofaa ruxsatnomasi doirasida ruxsat berilgan. Bog'da Manxetten loyihasining uchta asosiy joyi - Los Alamos, Oak -Ridj va Xanford joylashgan.

Los Alamosda 6000 dan ortiq olimlar va yordamchi xodimlar atom qurollarini loyihalash va qurish ustida ishladilar. Hozirgi vaqtda park uchta hududni o'z ichiga oladi: "Kichkina bola" bombasi V-saytining dizayni bilan bog'liq bo'lgan qurol uchastkasi va uchlik qurilmasi va plutoniy kimyoviy tadqiqotlar uchun ishlatilgan Pajarito saytining komponentlarini yig'ish bilan bog'liq.

Oak tizmasi qo'riqxonasiga aylangan Klinton muhandisi ishlari uranni boyitish va eksperimental plutoniy ishlab chiqarish uchun uchta parallel sanoat jarayonini qo'llab -quvvatladi.

Park X-10 Grafit Reaktori milliy tarixiy yodgorligini o'z ichiga oladi, u Y-12 kompleksidagi Los Alamos qurol-yarog 'binolarini qo'llab-quvvatlash uchun oz miqdordagi plutoniy ishlab chiqaradi, bu erda uranni boyitish uchun elektromagnit ajratish jarayoni va K-25 joylashgan. Uranni gazsimon diffuziya qilish texnologiyasi kashf etilgan bino.

Xanford muhandis -fabrikasi, hozirgi Xanford sayti, reaktorlarda uran yoqilg'isini ishlab chiqarish, sinovdan o'tkazish va nurlantirish uchun yirik sanoat majmuasini qurgan va boshqargan, keyin qurolda foydalanish uchun plutoniyni kimyoviy ajratib olgan 51000 dan ortiq ishchilar yashagan.

Xanford peyzaji, shuningdek, Manxetten loyihasining birinchi harakatlaridan biri-xususiy mulkni qoralash va uy egalari va amerikalik hind qabilalarini maxfiy ish uchun yo'l ochish uchun ko'chirish. Park B Reaktor milliy tarixiy yodgorligini o'z ichiga oladi, u Uch Birlik testi va plutoniy bombasi uchun material ishlab chiqargan va manxettenliklarga kelgunga qadar tashrif buyuruvchilarga Xanford hududining tarixini ko'rib chiqishga imkon beradigan to'rtta asrning tarixiy binolarini o'z ichiga oladi. Loyiha.

Park DOE o'rtasidagi hamkorlik sifatida boshqariladi, u park ob'ektlariga egalik qilish, saqlash va saqlashni davom ettirmoqda va ularga jamoatchilikka kirishni kengaytirish ustida ish olib boradi va Parkni boshqaruvchi, Manxetten loyihasi haqidagi hikoyani sharhlaydi. DOEga tarixiy saqlanish bo'yicha texnik yordam. DOE va AQSh Ichki ishlar vazirligi o'rtasida 2015 yil noyabr oyida imzolangan bitim memorandumi parkni rasman yaratdi va ikki agentlik tomonidan park vazifasini bajarishga rahbarlik qiladi.

DOE milliy tarixiy parki missiyasining asosiy komponenti jamoat bog'lari ob'ektlariga kirishni kengaytirish bo'lsa -da, DOE va uning pudratchilari virtual tashrif buyuruvchilar va talabalar tarixiy obidalar va Manxetten loyihasi haqida ma'lumot olishlari uchun onlayn resurslarni ishlab chiqish ustida ishlamoqda.

Bu DOE veb-sahifasi Manxetten loyihasining tarixiy, bosma, onlayn va shaxsan tarixiy manbalarining keng doirasini taklif etadi. Shuningdek, bo'lim Manxetten loyihasining tarixi va ta'siri haqida podkastlar tayyorladi.

Los Alamos parki bo'linmasida, Los Alamos milliy laboratoriyasi tomonidan boshqariladigan Bredberi ilmiy muzeyi, ko'plab elektron resurslarni, shu jumladan, Los Alamosdagi park va Y loyihasining umumiy ko'rinishi va laboratoriya maydonidagi Manxetten loyihalari obektlarining umumiy ko'rinishini taqdim etadi. Bredberi ilmiy muzeyining onlayn kollektsiyalari ma'lumotlar bazasi tashrif buyuruvchilarga Manxetten loyihasidagi asarlar, fotosuratlar va tarixiy hujjatlarni qidirish imkonini beradi. LANL, shuningdek, tarixiy joylar videosini tayyorladi va ularni kelajak avlodlar uchun saqlab qolish ustida ishlamoqda.

Oak Ridge K-25 virtual muzeyi tashrif buyuruvchilarga Manxetten loyihasi va sovuq urush haqida ma'lumot beradi.

Xanford parkiga virtual tashrif buyuruvchilar turli manbalar orqali kira oladilar, shu jumladan jamiyatdagi sheriklar tomonidan taqdim etilgan manbalar. DOE 360 darajali kamera tizimi orqali B Reaktor milliy tarixiy diqqatga sazovor joyiga virtual kirishni taklif qiladi.

Vashington shtati universiteti Tri -Siti shahridagi Hanford tarixi loyihasi (HHP) DOEning federal Manxetten loyihasi va Sovuq Urush asarlar va og'zaki tarixini saqlaydi. HHP veb -saytida ushbu to'plamlarga, shuningdek, OHPning og'zaki tarixlar to'plamlariga, sovg'a qilingan arxiv materiallari, hujjatlar va fotosuratlarga virtual kirish mumkin.

B Reaktor muzeylari assotsiatsiyasi B Reaktorning qanday ishlashi va nima uchun u ilmiy va muhandislik mo''jizasi sifatida tan olinishi haqida chuqur ma'lumotga ega bo'lgan bir qator videolarni taqdim etadi.


Manxetten loyihasining ayol olimlari

Doktor Mari Kuri

  • Mari Sklodovskiy 1867 yilda Polshaning Varshava shahrida tug'ilgan, matematika va fizika o'qituvchisi.
  • Ayol bo'lgani uchun universitetga kira olmadi, Mari "Uchar universitet" ostidagi kollejda o'qidi.
  • Mari 1891 yilda fizika -matematika ilmiy darajasini olish uchun Parijga ko'chib o'tdi.
  • Magistrlik diplomini olganidan so'ng, Mari keyinchalik uning eri bo'lgan Per Kuri bilan ishlay boshladi.
  • Mari va Per Kuri ikkita yangi elementni - poloniy va radiyni kashf etdilar va radioaktivlik atamasini kiritdilar.
  • 1903 yilda Mari Kuri Frantsiyada doktorlik darajasini olgan birinchi ayol bo'ldi.
  • Mari va Per 1903 yilda fizikadagi ishlari uchun Nobel mukofotiga sazovor bo'lishdi.
  • 1911 yilda Mari Kuri kimyo bo'yicha Nobel mukofotiga sazovor bo'ldi.
  • Birinchi jahon urushi paytida Kuri vaqtini yarador askarlarga yordam berishga bag'ishladi va Nobel mukofoti puliga urush zanjirlarini sotib oldi.

Doktor Liz Meitner

  • Lise Meitner 1878 yilda Avstriyada yahudiy oilasida tug'ilgan.
  • Meitner 1905 yilda Vena universitetida fizika fanlari doktori ilmiy darajasini olgan ikkinchi ayol bo'ldi.
  • O'qishni tugatgandan so'ng, Meitner Berlinga ko'chib o'tdi va Otto Xan bilan ishlay boshladi, u erda ular bir nechta yangi izotoplarni topdilar.
  • 1922 yilda Meitner Germaniyada birinchi bo'lib Berlin universitetining fizika professori bo'ldi.
  • 1938 yilda Meitner Berlindan yashirincha Shvetsiyaga borishga majbur bo'ldi va u erda o'z ishini davom ettirdi.
  • Olti oy o'tgach, Meitner va Otto Frishch yadroviy bo'linishni tushuntirgan va nomlagan natijalarni e'lon qilishdi.
  • Liza bir necha bor nomzod bo'lgan bo'lsa -da, bu ishi uchun Nobel mukofotini olmagan. Otto Xan mukofot bilan taqdirlandi.
  • Manxetten loyihasida o'z pozitsiyasini taklif qilgan Meitner, "Men bomba bilan hech qanday aloqasi yo'q", deb rad etdi.
  • 1997 yilda kashf etilgan 109 -element uning sharafiga nomlangan. Meitnerium.

Doktor Leona Vuds Marshall Libbi

Doktor Leona Vuds Marshall Libbi

  • Leona 14 yoshida o'rta maktabni va 19 yoshida Chikago universitetini kimyo bo'yicha bakalavr diplomini tamomlagan.
  • Doktorlik dissertatsiyasini tugatayotganda. Vuds Chikago qozig'ida ishlash uchun tayinlangan, u erda qoziqdagi neytronlar oqimini o'lchash uchun ishlatiladigan neytron detektorlarini qurgan.
  • Leona, shuningdek, Xanforddagi yagona ayol olim bo'lib, Enriko Fermi bilan bevosita ishlagan.
  • Doktor Libbi 1973 yilda UCLAda tashrif buyurgan professor lavozimini egallashdan oldin bir qancha universitetlarda muvaffaqiyatli o'qituvchilik faoliyatini davom ettirdi.
  • Doktor Libbi tadqiqotlari yozuvlar saqlanishidan yuz yillar oldin daraxt halqalarida yog'ingarchilik shakllarini o'rganishni o'z ichiga olgan. Bu iqlim o'zgarishini tadqiq qilish uchun eshikni ochdi.

Manxetten loyihasining ishi

In the initial stages of the American fission effort (1939-1942), scientists at a variety of university laboratories — notably Columbia University, the University of Chicago, and the University of California–Berkeley, among many others— identified key processes for the development of the “fissile material” fuel that is necessary for a nuclear weapon to operate.

The first approach considered was the isotopic enrichment of uranium. (Chemical elements can vary in the number of neutrons in their nucleus, and these different forms are known as isotopes.) It was discovered as early as 1939 that only one isotope of uranium was fissionable by neutrons of all energies, and by 1941 it was understood that to make a fission weapon required a reasonably pure amount of material that met this criterion. Less than 1% of the uranium as mined is the fissile uranium-235 isotope, with the other 99% being uranium-238, which inhibits nuclear chain reactions. It was understood by 1941 that to make a weapon the fissile uranium-235 would need to be separated from the non-fissile uranium-238, and that because they were chemically identical this could only be accomplished through physical means that relied on the small (three neutron) mass difference between the atoms. Isotopic separation had been undertaken for other elements (for example, the separation of the hydrogen isotope deuterium from the bulk of natural water), but never on a scale of the sort contemplated for the separation of uranium. 16

Several methods were proposed and explored at small scales at various research sites in the United States. The preferred candidates by the end of the first year of the Manhattan Project (1942) were:

Electromagnetic separation, in which powerful magnetic fields were used to create looping streams of uranium ions that would slightly concentrate the lighter isotope at the fringes. This work was related to the cyclotron concept pioneered by Ernest Lawrence at the University of California, and the bulk of the research took place at his Radiation Laboratory.

Gaseous diffusion, in which a gaseous form of uranium was forced through a porous barrier consisting of extremely fine passageways. The gas molecules containing the lighter isotope would navigate the barrier slightly faster than the gas molecules containing the heavier isotope, although the effect would have to be magnified through many stages before it resulted in significant separation. This work was originally explored primarily at Columbia University under the guidance of Harold Urey and others.

Thermal diffusion, in which extreme heat and cold were applied to opposite sides of a long column of uranium gas, which also resulted in slight separation, with the lighter uranium isotope concentrating at one end. This was initially investigated by Philip Abelson at the Naval Research Laboratory.

Centrifugal enrichment, in which the rapid spinning of a uranium gas allowed for the slight concentration of the lighter element at the center of the whirling mixture, a process that would also require a large number of “stages” to be successful. This was pursued by physicist Jesse W. Beams at the University of Virginia and at the Standard Oil Development Company in New Jersey. 17

Over the course of 1943, centrifugal enrichment proved less promising than the other methods, and by 1944 the method was essentially abandoned (though it would, in the postwar period, be perfected by German and Austrian scientists working in the Soviet Union). Because it was unclear which of the other techniques would be most successful at scale, both the electromagnetic and gaseous diffusion methods were pursued with great gusto, and arguably constituted the most substantial portion of the Manhattan Project. The construction and operation of the two massive facilities required for these methods (the Y-12 facility for the electromagnetic method, and K-25 facility for the gaseous diffusion method) alone made up 52% of the cost of the overall project, and all of the Oak Ridge facilities together totaled 63% of the entire project cost. While thermal diffusion was initially imagined as a competitor process, difficulties in achieving the desired level of enrichment led to all three methods being “chained” together as a sequence: the raw uranium would be enriched from the natural level of 0.72% uranium-235 to 0.86% at the thermal diffusion plant, and its output would then be enriched to 23% at the gaseous diffusion plant, and then finally enriched to an average level of 84% at the electromagnetic plants. 18

Image 3: Calutron operators at the Y-12 plant in Oak Ridge monitored indicators and turned dials in response to changing values, not knowing that they were actually aiming streams of uranium ions, much less that they were producing the fuel for a new weapon. Source: Photo by Ed Westcott, 1944 (Department of Energy).

The plants for the production of enriched uranium were constructed in Oak Ridge, Tennessee, an isolated site that was chosen primarily for its proximity to the large electrical resources provided by the Tennessee Valley Authority. The Oak Ridge site (Site X) employed over 45,000 people for construction at its peak, and had a similar number of employees on the payroll for managing its continued operations once built. A “secret city,” the facility relied on heavy compartmentalization (“need to know”) so that practically none of its thousands of employees had any real knowledge of what they were producing. Every aspect of life in Oak Ridge was controlled by contractors and the military, in the aim of producing weapons-grade material in maximum haste and with a minimum of security breaches. Situated in the Jim Crow South, the facility was entirely segregated by law, and living conditions between African-Americans and whites varied dramatically. Various industrial contractors managed the different plants (for example, the Union Carbide and Carbon Corporation operated K-25, and the Tennessee Eastman Corporation operated Y-12). 19

In the process of researching the possibility of nuclear fission, another road to a bomb had made itself clear. Nuclear reactors had been contemplated as early as nuclear weapons. Where a nuclear weapon requires high concentrations of fissile material to function, a reactor does not: a controlled nuclear reaction (as opposed to an explosive one) can be developed through natural or slightly-enriched uranium through the use of a substance called a “moderator,” which slows the neutrons released from fission reactions. Under the right conditions, this allows a chain reaction to proceed even in unenriched material, and the reaction is considerably slower, and much more controllable, than the kind of reaction that occurs inside of a bomb.

Nuclear reactors had been explored as possible energy sources, though engineering difficulties would make this use of them more difficult than was anticipated (the first nuclear reactors for power purposes in the United States did not go critical until 1958). More importantly for the wartime planners, it was realized that the plentiful uranium-238 isotope, while not fissile, could still be quite useful. When uranium-238 absorbs a neutron, it does not undergo fission, but instead transmutes into uranium-239. Uranium-239, however, is unstable, and through a series of nuclear decays becomes, in the span of a few days, the artificial element plutonium-239. Isolated for the first time in February 1941, plutonium was calculated and confirmed to have very favorable nuclear properties (it is even more reactive than uranium-235, and thus even less of it is necessary for a chain reaction). 20

Image 4: Men working on the front face of the Hanford B-Reactor, circa 1944. Source: Department of Energy.

The first controlled nuclear reaction was achieved in December 1942 at the University of Chicago, by a team led by Enrico Fermi. The first reactor, Chicago Pile-1, used purified graphite as its moderator and 47 tons of natural (unenriched) uranium in the form of metal ingots. Even while the pilot Chicago Pile-1 reactor was still being constructed, plans were being made for the creation of considerably larger, industrial-sized nuclear reactors at a remote site in Hanford, Washington, constructed and operated by E.I. du Pont Nemours & Co. (DuPont). The Hanford site (Site W) was chosen largely for its proximity to the Columbia River, whose water would be used for cooling purposes. On dusty land near the river, three large graphite-moderated reactors were constructed starting in 1943, with the first reactor going critical in September 1944. A massive chemical facility known as a “canyon” was constructed nearby, by which, largely through automation and remote control, the irradiated fuel of the reactors was chemically stripped of its plutonium. This process involved dangerously radioactive materials, chemically noxious substances (powerful acids), and was fairly inefficient (every ton of uranium fuel that was processed yielded 225 grams of plutonium). 21

The labor conditions at Hanford varied considerably from Oak Ridge. Where Oak Ridge was imagined as a cohesive community, Hanford was not, and employed an abundance of cheap labor in far inferior work conditions (and those at Oak Ridge were not so great to begin with). The radioactive and chemical wastes at the site were treated in an expedient, temporary fashion, with the idea that in the less-hurried future they would be more properly eliminated. Subsequent administrations continued this approach for decades. Hanford became regarded as the most radioactively contaminated site in the United States, and since the end of the Cold War has been involved in expensive cleanup and remediation efforts. The Hanford project constituted about 21% of the total cost of the Manhattan Project. 22


Image 5: The relative costs (in 1945 USD) of the major expense categories of the Manhattan Project. Note that Oak Ridge has been broken down into its subcomponents (K-25, Y-12, S-50, etc.). Source: Data from Hewlett and Anderson 1962, Appendix 2, graph by Alex Wellerstein.

The work of these two sites — Oak Ridge and Hanford — constituted the vast bulk of the labor and expense of the Manhattan Project (roughly 80% of both). Without fuel, there could be no atomic bomb: it was and remains a key chokepoint in the development of nuclear weapons. As a result, it is important to conceptualize the Manhattan Project as much more than just basic science alone: without an all-out military-industrial effort, the United States would not have had an atomic bomb by the end of World War II.

The head of the Manhattan Project’s entire operation was Brigadier General Leslie R. Groves, a West-Point trained engineer who had previously been instrumental in the construction of the Pentagon building. Groves had accepted the assignment reluctantly, liking neither the risk of failure nor the fact that it was a home-front assignment. But once he accepted the job, he was determined to see it through to success. His unrelenting drive resulted in the Manhattan Project being given the top level of priority of all wartime projects in the United States, which allowed him nearly unfettered access to the resources and labor necessary to build a new atomic empire. Groves amplified the degree of secrecy surrounding the project through his application of compartmentalization (which he considered “the very heart of security”), and his own autonomous domestic and even foreign intelligence and counter-intelligence operations, making the Manhattan Project a virtual government agency of its own. (Despite these precautions, the project was, it later was discovered, compromised to the Soviet Union by several well-placed spies.) While it is uncharacteristic to associate the success or failure of massive projects with single individuals, it has been plausibly argued that Groves was perhaps the most “indispensable” individual to the project’s success, and that his willingness to accelerate and amplify the work being done in the face of setbacks, and to bully his way through military and civilian resistance, was essential to the project achieving its results when it did. 23

Though the scientific research on the project was initially dispersed among several American universities, as the work moved further into the production phase civilian and military advisors to the project concurred that the most sensitive research work, specifically that on the design of the bomb itself, should be located somewhere more secure than a university campus in a major city. Bush, Conant, and Arthur Compton had all come to the conclusion that a separate, isolated laboratory should be created for this final phase of the work. In late 1942, Groves identified Berkeley theoretical physicist J. Robert Oppenheimer as his preferred candidate for leading the as-yet-created laboratory, and on Oppenheimer’s recommendation identified a remote boys’ school in Los Alamos, New Mexico, as the location for the work. Initially imagined to be fairly small, the Los Alamos laboratory (Site Y) soon became a sprawling operation that took on a wide variety of research projects in the service of developing the atomic bomb, ending the war with over 2,500 people working at the site. 24

Image 6: The percentage distribution of personnel between divisions at Los Alamos. The reorganization in August 1944 merged several divisions into interdisciplinary groups focused around specific problems. The pre-reorganization division abbreviations: Chem = Chemistry, Eng = Engineering, Ex = Experimental Physics, Theo = Theoretical Physics,. The post-reorganization abbreviations: A = Administrative, CM = Chemistry & Metallurgy, F = Fermi (whose division studied many issues), G = Gadget, O = Ordnance, R = Research, Tr & A = Trinity and Alberta (Testing and Delivery), X = Explosives. Source: Hawkins 1983, 302.

Though the work of the bomb was even at the time most associated with physicists, it is worth noting that at Los Alamos, there were roughly equal numbers of physicists, chemists, metallurgists, and engineers. The physics-centric narrative, promulgated in part by the physicists themselves after the war (in part because the physics of the atomic bomb was easier to declassify than other aspects), obscures the multidisciplinary research work that was required to turn table-top laboratory science into a working weapon. 25

It is not exceptionally hyperbolic to say that the Los Alamos laboratory brought together the greatest concentration of scientific luminaries working on a single project that the world had ever seen. It was also highly international in its composition, with a significant number of the top-tier scientists having been refugees from war-torn Europe. This included a significant British delegation of scientists, part of an Anglo-American alliance negotiated by Winston Churchill and Roosevelt. For the scientists who went to the laboratory, especially the junior scientists who were able to work and mingle with their heroes, the endeavor took on the air of a focused and intensive scientific summer camp, and the numerous memoirs about the period at times underemphasize that the goal was to produce weapons of mass destruction for military purposes. 26

Los Alamos grew because the difficulty and scope of the work grew. Notably a key setback motivated a massive reorganization of the laboratory in the summer of 1944, when it was found that plutonium produced by nuclear reactors (as opposed to the small samples of plutonium that had been produced in particle accelerators) could not be easily used in a weapon. The original plan for an atomic bomb design was relatively simple: two pieces of fissile material would be brought together rapidly as a “critical mass” (the amount of material necessary to sustain an uncontrolled chain reaction) by simply shooting one piece into the other through a gun barrel using conventional explosives. This “gun-type” design still involved significant engineering considerations, but compared to the rest of the difficulties of the project it was considered relatively straightforward. 27

The first reactor-bred samples of plutonium, however, led to the realization that the new element could not be used in such a configuration. The presence of a contaminating isotope (plutonium-240) increased the background neutron rate of reactor-bred plutonium to levels that would pre-detonate the weapon were two pieces of material to be shot together, leading to a significantly reduced explosion (designated a “fizzle”). Only a much faster method of achieving a critical mass could be used. A promising, though ambitious, method had been previously proposed, known as “implosion.” This required the creation of specialized “lenses” of high explosives, arranged as a sphere around a subcritical ball of plutonium, that upon simultaneous detonation would symmetrically squeeze the fuel to over twice its original density. If executed correctly, this increase in density would mean that the plutonium in question would have achieved a critical mass and also explode. But the degree of simultaneity necessary to compress a bare sphere of metal symmetrically is incredibly high, a form of explosives engineering that had scarcely any precedent. Oppenheimer reorganized Los Alamos around the implosion problem, in a desperate attempt to render the plutonium method a worthwhile investment. Modeling the compressive forces, much less achieving them (and the levels of electrical simultaneity necessary) required yet another massive multidisciplinary effort. 28

As of summer 1944, there were two designs considered feasible: the “gun-type” bomb which relied upon enriched uranium from Oak Ridge, and the “implosion” bomb which relied upon separated plutonium from Hanford. The manufacture of the factories that produced this fuel required raw materials, equipment, and logistics from many dozens of sites, and together with the facilities that were involved with producing the other components of the bomb, there were several hundred discrete locations involved in the Manhattan Project itself, differing dramatically in size, location, and character. To choose a few interesting examples: a former playhouse in Dayton, Ohio, was converted into the site for the production of the highly-radioactive and highly-toxic substance polonium, which was to be used as a neutron source in the bombs, without any knowledge of the residents who lived around it most of the uranium for the project was procured from the Congo and a major reactor research site was created in Quebec, Canada, as part of the British contribution to the work. 29


Image 7: The assembled implosion “gadget” of the Trinity test, July 1945, with physicist Norris Bradbury for scale. Source: Los Alamos National Laboratory.

The uncertainties involved in the implosion design meant that the scientists were not confident that it would work and, if it did work, how efficient, and thus explosive, it would be. A full-scale test of the implosion design was decided upon, at a remote site at the White Sands Proving Ground, 60 miles from Alamogordo, New Mexico. On July 16, 1945, the test, dubbed “Trinity” by Oppenheimer, was even more successful than expected, exploding with the violence of 20,000 tons of TNT equivalent (20 kilotons, in the new standard of explosive power developed by the project participants). 30 (They had considerably more confidence in the gun-type bomb, and in any case, lacked enough enriched uranium to contemplate a test of it.)

Along with the work of the creation of the key materials for the bombs and the weapons designs themselves, additional thought was put into the question of “delivery,” the effort that would be required to detonate the bomb over a target. This aspect of the project, more a concern of engineering than science per se, was itself nontrivial: the atomic bombs were exceptionally heavy by the standards of the time, and the implosion bomb in particular had an ungainly egg-like shape. The “Silverplate” program created modified versions of the B-29 Superfortress long-range heavy bombers (most of their armaments and all of their armor were removed so that they could fly higher and faster with the heavy bombs), while Project Alberta, headquartered at Wendover Army Air Field in Utah, developed the ballistic cases of the weapons while training crews in the practice of delivering such weapons with relative accuracy. 31


Beginning in 1943, Project Y – the code name for Los Alamos during World War II – transformed the isolated Pajarito Plateau. The sounds of construction equipment replaced the voices of the Los Alamos Ranch School boys and local homesteaders. Construction crews hurriedly built many structures on mesa tops and in the canyons of Los Alamos. Countless concerns flooded Manhattan Project staff, but desiging structures to withstand the test of time was not one of them. The top-secret race to develop an atomic bomb before Nazi Germany was on and everyone felt the pressure.

Over the next 75 years, some of the structures slumped into disrepair from exposure to the harsh northern New Mexico environment — concrete cracking and spalling, wood frames rotting. That’s where Los Alamos National Laboratory’s historic preservation team enters the Manhattan Project story.

“Concrete has proven to be especially susceptible to the dozens of freeze-thaw cycles that often take place on a winter day in Los Alamos,” said Jeremy Brunette from the Laboratory’s Historic Building Surveillance and Maintenance Program.

The Manhattan Project National Historical Park team at Los Alamos identified several sites that need attention, and they work continuously to maintain, restore, and protect these historic sites. Most recently, two sites that share different stories from the early years of the Laboratory underwent preservation work.

Overshadowed story: plutonium recovery

A story that is often overshadowed when sharing Manhattan Project history is that of plutonium recovery. The Concrete Bowl helps bring that story to life.

Throughout the Manhattan Project, uranium and plutonium were so rare and costly that scientists carefully conserved every gram. By the end of 1945, it cost an estimated $390 million to create the plutonium for the Manhattan Project — that is over $5 billion in today’s money! During the Trinity Test, scientists planned to carry out a test with half the world’s plutonium, so tensions were understandably high.

If the Trinity Test did not succeed, project staff needed to recover the precious plutonium rather than losing it on a failed test. Manhattan Project researchers discussed several possible plutonium recovery approaches and tested any potential solutions that were not too far-fetched. One idea was the “water recovery method.”

For this method, staff members constructed a concrete bowl 200 feet in diameter and built a wooden water tank on a tower in the center. In this water tank, they placed a small-scale, industrial prototype of a bomb that contained natural uranium as a stand-in for plutonium. Researchers then detonated this mock-up with conventional explosives inside the water tank.

The water from the explosion landed in this concrete reservoir and drained into the bowl’s filter system, where workers recovered the metal fragments. Scientists continued these water-recovery tests until early 1945, but after realizing this method was not feasible for a full-scale nuclear test, they moved on to other potential recovery methods—including the infamous giant steel containment vessel known as “Jumbo.”

The Concrete Bowl remains in place today—an example of the wartime Laboratory’s practice of simultaneously testing different solutions to solve complex problems. In the 75 years since the bowl’s construction, weeds and trees took over and the local fauna discovered it as a reliable watering hole on the arid Pajarito Plateau.

“One of the pleasures of working at the Concrete Bowl is the amount of wildlife in the area. We saw elk, deer and coyotes every day,” Brunette said.

Concrete bowl before restoration. Concrete bowl after restoration.

Brunette also described that “in the Concrete Bowl, the steel reinforcing mesh was placed too close to the surface, exposing it to the elements and allowing it to carry moisture and rust into the concrete.”

Before any work began, the Lab’s Environmental Protection and Compliance Division ensured there was no contamination remaining from these early tests at the site. The Lab’s Historic Buildings team worked with Vital Consulting Group from Albuquerque on the removal of damaging vegetation to preserve this unique historic site. Vital Consulting Group also graded the soil away from the bowl to reduce the accumulation of water inside the bowl.

While the deer and elk may need to find a new watering hole, these efforts will preserve this historic site for years to come.

An early wartime test facility

From the beginning of Project Y, Robert Oppenheimer and Manhattan Project physicists believed they could make a “gun-type” atomic bomb, but they had to perfect the mechanism that could cause a sustained chain reaction in fissionable material. Manhattan Project researchers developed the Gun Site, known in 1943 as Anchor Ranch Proving Ground, to design and test nuclear weapon prototypes.

At this site, scientists, engineers, ordinance experts, and members of the U.S. Navy conducted experiments on the inner workings of this design. The name Gun Site refers to this site’s role in the development of the uranium weapon, Little Boy.

Because researchers fired numerous “gun-assembly” tests at this site using special gun barrels made by the U.S. Navy, they needed bunkers for protection during their experiments. Manhattan Project engineers constructed the buildings in a natural drainage, placing the tests above the bunkers and lessening the hazards of these experiments.

Scientists observed the tests from inside the concrete and earthen bunkers using a wooden periscope tower that relied on an elaborate system of mirrors—like a milk carton periscope you may have made as a child.

Gun Site during Manhattan Project—the wooden periscope tower is visible in the back right of the image.

Today, the preservation mission for this site came back to a familiar issue—concrete. Brunette explains why Manhattan Project era concrete presents the greatest preservation challenge. “We find that much of the Manhattan Project era concrete was mixed using large, smooth river rock aggregate that would not be suitable for modern construction.”

The buildings at Gun Site underwent extensive concrete repairs in 2012, including the reconstruction of the concrete parapet wall and a concrete cap to drain water from the top. However, that concrete cap failed and allowed further degradation of the historic site. The Lab and Vital Consulting Group worked to remove the crumbling concrete from the 2012 project. With this work completed, the Manhattan Project team will move forward with additional preservation efforts at Gun Site.

Gun Site parapet wall and cap before restoration. Gun Site parapet wall and cap after restoration.

These unique sites tell the story of Los Alamos National Laboratory’s history of solving difficult scientific and technological challenges and the story of a collective effort to achieve a common goal. The Manhattan Project was an immense project that created new fields of science and shaped the world we live in today.

In the spirit of its namesake, collaboration and teamwork defines the Manhattan Project National Historical Park. The National Park Service, the Department of Energy National Nuclear Security Administration’s Los Alamos Field Office, and Los Alamos National Laboratory work together to protect these sites for future generations. Ensuring that important historic sites remain intact to tell the story of this world-changing event is a crucial component of the collaborative effort to administer the Manhattan Project National Historical Park. The team is not finished they have already begun preservation work in another significant Manhattan Project historic location, V-Site.


The Manhattan Project National Historical Park

Preserving and sharing the nationally significant historic sites, stories, and legacies associated with the top-secret race to develop an atomic weapon during World War II.

This photo, taken on December 4, 1946, shows the center of Los Alamos as it looked during Project Y years. Called Technical Area 1, it was the core of the original laboratory.

  • Manhattan Project NHP-Los Alamos Public Engagement Specialist
  • Jonathan Creel
  • CPA-CPO
  • (505) 667-6277
  • E -pochta
  • Manhattan Project NHP-Los Alamos Project Manager
  • Cheryl Abeyta
  • EPC-DO
  • E -pochta

In 1943, as World War II raged across the globe, the United States government secretly constructed a laboratory on a group of isolated mesas in northern New Mexico. The top-secret Manhattan Project had a single military purposedevelop the world’s first atomic weapons.  

The success of this unprecedented government program forever changed the world. Join us to discover the stories of the people behind the Manhattan Project and how they shaped the world we live in today.

Scientists, engineers, explosive experts, military personnel, and members of the Special Engineer Detachment all convened on the rural Pajarito Plateau in New Mexico for a secret project during World War II. Their mission: develop an atomic weapon before Nazi Germany. General Leslie R. Groves selected J. Robert Oppenheimer, a theoretical physicist from the University of California at Berkeley, as the scientific project director. This unprecedented undertaking required revolutionary science, engineering, technological innovation, and collaboration between civilians and military personnel from diverse backgrounds.

Twenty-eight months after Project Y began in Los Alamos, members of the Manhattan Project detonated the world’s first atomic weapon, the "Gadget," at the Trinity Site in southern New Mexico. After the military deployment of two atomic weapons on the Japanese cities of Hiroshima and Nagasaki, and the subsequent end of World War II, some Los Alamos scientists took their families and returned to their pre-war lives. Yet, many stayed to continue critical research in this new Nuclear Age.

Today, Los Alamos National Laboratory remains one of the United States’ premier science and technology institutions. Cutting-edge research and technological breakthroughs still happen here, as scientists and engineers work to solve some of today’s most complex problems.

The Manhattan Project’s legacy of revolutionary science and engineering, along with the lessons learned from that time, continues in the spirit of the modern Laboratory. Scientific and technological advances made in the pursuit of an atomic weapon contributed to progress in many areas: environmental and materials science, biology, nuclear medicine, nuclear energy, supercomputing, precision machining, even astronomy. This was also the beginning of the Department of Energy’s National Laboratory System.

The U.S. Congress directs the National Park Service and the Department of Energy to determine the significance, suitability, and feasibility of including signature facilities remaining from the Manhattan Project in a national historical park. This was an effort to preserve remaining structures in order to save them from being lost forever.  

The National Defense Authorization Act, signed by President Obama, authorizes the creation of Manhattan Project National Historical Park. The stated the purpose of the park is “to improve the understanding of the Manhattan Project and the legacy of the Manhattan Project through interpretation of the historic resources.” On November 10, 2015, a Memorandum of Agreement signed by the Secretary of the Interior and the Secretary of the Department of Energy makes the park a reality.

Three sites tell the story of more than 600,000 Americans working to help end World War II. These three locations, integral to the Manhattan Project, comprise the park today.

    designed and built the first atomic bombs.   enriched uranium needed for the gun-type fission weapon.   created plutonium for an implosion-type weapon design.

Bugun

The Manhattan Project National Historical Park encompasses 17 sites on Los Alamos National Laboratory property and 13 sites in downtown Los Alamos, where “Project Y” was centered during World War II. These sites represent the world-changing history of the Manhattan Project at Los Alamos.  

Today, you can visit the Los Alamos Downtown historic sites, but the sites on Laboratory land are not accessible to the public. However, the Department of Energy, Los Alamos National Laboratory, and the National Park Service collaborate to provide public tours of three sites on Laboratory property. Click here for more information on these tours and how to register for them.


Videoni tomosha qiling: TASHKENT CITY 2020